RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2014, том 286, страницы 246–261 (Mi tm3565)

Эта публикация цитируется в 9 статьях

The Sokolov case, integrable Kirchhoff elasticae, and genus 2 theta functions via discriminantly separable polynomials

Vladimir Dragovićab, Katarina Kukićc

a Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX, USA
b Mathematical Institute SANU, Belgrade, Serbia
c Faculty for Traffic and Transport Engineering, University of Belgrade, Belgrade, Serbia

Аннотация: We use the discriminantly separable polynomials of degree 2 in each of three variables to integrate explicitly the Sokolov case of a rigid body in an ideal fluid and integrable Kirchhoff elasticae in terms of genus 2 theta functions. The integration procedure is a natural generalization of the one used by Kowalevski in her celebrated 1889 paper. The algebraic background for the most important changes of variables in this integration procedure is associated to the structure of the two-valued groups on an elliptic curve. Such two-valued groups have been introduced by V. M. Buchstaber.

УДК: 517.958

Поступило в апреле 2013 г.

Язык публикации: английский

DOI: 10.1134/S0371968514030133


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2014, 286, 224–239

Реферативные базы данных:


© МИАН, 2024