RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2014, том 286, страницы 347–367 (Mi tm3568)

Эта публикация цитируется в 3 статьях

Smooth projective toric variety representatives in complex cobordism

Andrew Wilfong

Department of Mathematics, Eastern Michigan University, Ypsilanti, MI 48197, USA

Аннотация: A general problem in complex cobordism theory is to find useful representatives for cobordism classes. One particularly convenient class of complex manifolds consists of smooth projective toric varieties. The bijective correspondence between these varieties and smooth polytopes allows us to examine which complex cobordism classes contain a smooth projective toric variety by studying the combinatorics of polytopes. These combinatorial properties determine obstructions to a complex cobordism class containing a smooth projective toric variety. However, the obstructions are only necessary conditions, and the actual distribution of smooth projective toric varieties in complex cobordism appears to be quite complicated. The techniques used here provide descriptions of smooth projective toric varieties in low-dimensional cobordism.

УДК: 515.142.426

Поступило в декабре 2013 г.

Язык публикации: английский

DOI: 10.1134/S0371968514030194


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2014, 286, 324–344

Реферативные базы данных:


© МИАН, 2024