RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2014, том 287, страницы 129–139 (Mi tm3587)

Эта публикация цитируется в 6 статьях

On the submartingale/supermartingale property of diffusions in natural scale

Alexander Gushchina, Mikhail Urusovb, Mihail Zervosc

a Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
b Faculty of Mathematics, University of Duisburg-Essen, Essen, Germany
c Department of Mathematics, London School of Economics, London, UK

Аннотация: S. Kotani (2006) has characterised the martingale property of a one-dimensional diffusion in natural scale in terms of the classification of its boundaries. We complement this result by establishing a necessary and sufficient condition for a one-dimensional diffusion in natural scale to be a submartingale or a supermartingale. Furthermore, we study the asymptotic behaviour of the diffusion's expected state at time $t$ as $t\to\infty$. We illustrate our results by means of several examples.

УДК: 519.217

Поступило в августе 2014 г.

Язык публикации: английский

DOI: 10.1134/S0371968514040086


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2014, 287:1, 122–132

Реферативные базы данных:


© МИАН, 2024