RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2015, том 288, страницы 67–94 (Mi tm3598)

Эта публикация цитируется в 10 статьях

Вложенные изгибаемые сферические кросс-политопы с непостоянными объемами

А. А. Гайфуллинabc

a Московский государственный университет им. М. В. Ломоносова, Москва, Россия
b Математический институт им. В. А. Стеклова РАН, Москва, Россия
c Институт проблем передачи информации им. А. А. Харкевича РАН, Москва, Россия

Аннотация: Построены примеры вложенных изгибаемых кросс-политопов в сферах всех размерностей. Эти примеры представляют интерес с двух точек зрения. Во-первых, в размерностях $4$ и выше это первые примеры вложенных изгибаемых многогранников. Следует отметить, что, в отличие от сфер, в евклидовых пространствах и пространствах Лобачевского размерностей $4$ и выше до сих пор не известно ни одного примера вложенного изгибаемого многогранника. Во-вторых, показано, что объемы построенных изгибаемых кросс-политопов непостоянны в процессе изгибания. Таким образом, эти кросс-политопы дают контрпримеры к гипотезе о кузнечных мехах для сферических многогранников. Ранее контрпример к этой гипотезе был построен только в размерности $3$ (В. А. Александров, 1997), и он не был вложенным. Для изгибаемых многогранников в сферах предложено ослабление гипотезы о кузнечных мехах, которое названо модифицированной гипотезой о кузнечных мехах. Показано, что эта гипотеза выполняется для всех изгибаемых кросс-политопов простейшего типа, среди которых находятся наши контрпримеры к обычной гипотезе о кузнечных мехах. Попутно получен ряд геометрических результатов об изгибаемых кросс-политопах простейшего типа, в частности, выписаны соотношения на объемы их граней коразмерностей $1$ и $2$.

УДК: 514.114

Поступило в октябре 2014 г.

DOI: 10.1134/S0371968515010057


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2015, 288, 56–80

Реферативные базы данных:


© МИАН, 2024