RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2015, том 288, страницы 184–208 (Mi tm3599)

Эта публикация цитируется в 26 статьях

Ergodic properties of visible lattice points

Michael Baake, Christian Huck

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany

Аннотация: Recently, the dynamical and spectral properties of square-free integers, visible lattice points and various generalisations have received increased attention. One reason is the connection of one-dimensional examples such as $\mathscr B$-free numbers with Sarnak's conjecture on the “randomness” of the Möbius function; another is the explicit computability of correlation functions as well as eigenfunctions for these systems together with intrinsic ergodicity properties. Here, we summarise some of the results, with focus on spectral and dynamical aspects, and expand a little on the implications for mathematical diffraction theory.

УДК: 511+517.98

Поступило в сентябре 2014 г.

Язык публикации: английский

DOI: 10.1134/S0371968515010136


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2015, 288, 165–188

Реферативные базы данных:


© МИАН, 2024