RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2016, том 292, страницы 100–117 (Mi tm3685)

Эта публикация цитируется в 5 статьях

Ergodic decomposition of group actions on rooted trees

Rostislav Grigorchuka, Dmytro Savchukb

a Department of Mathematics, Texas A&M University, College Station, TX 77843, USA
b Department of Mathematics and Statistics, University of South Florida, 4202 East Fowler Ave., Tampa, FL 33620-5700, USA

Аннотация: We prove a general result about the decomposition into ergodic components of group actions on boundaries of spherically homogeneous rooted trees. Namely, we identify the space of ergodic components with the boundary of the orbit tree associated with the action, and show that the canonical system of ergodic invariant probability measures coincides with the system of uniform measures on the boundaries of minimal invariant subtrees of the tree. Special attention is paid to the case of groups generated by finite automata. Few examples, including the lamplighter group, Sushchansky group, and so-called universal group, are considered in order to demonstrate applications of the theorem.

УДК: 512+517.98+519.1

Поступило в редакцию: 30 декабря 2014 г.

Язык публикации: английский

DOI: 10.1134/S0371968516010064


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2016, 292, 94–111

Реферативные базы данных:


© МИАН, 2024