Аннотация:
Работа посвящена исследованию спектральных свойств краевой задачи, описывающей одномерные колебания вдоль оси $Ox_1$ периодически чередующихся $M$ упругих и $M$ вязкоупругих слоев, параллельных плоскости $Ox_2x_3$. Установлено, что спектр краевой задачи представляет собой объединение корней $M$ уравнений. Изучено асимптотическое поведение спектра задачи при $M\to\infty$; в частности, доказано, что не все последовательности собственных значений исходной (допредельной) задачи сходятся к собственным значениям соответствующей усредненной (предельной) задачи.