RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2018, том 302, страницы 202–213 (Mi tm3920)

Ограниченные дискретные голоморфные функции на плоскости Лобачевского

И. А. Дынников

Математический институт им. В.А. Стеклова Российской академии наук, Москва, Россия

Аннотация: Показано, что для дискретизации комплексного анализа, предложенной ранее С.П. Новиковым и автором, существует богатый набор ограниченных дискретных голоморфных функций на плоскости Лобачевского, снабженной триангуляцией правильными треугольниками с четной валентностью вершин. А именно доказано, что любая дискретная голоморфная функция в ограниченной выпуклой области продолжается до ограниченной дискретной голоморфной функции на всей плоскости Лобачевского, причем так, что энергия Дирихле конечна.

Ключевые слова: дискретный комплексный анализ, дискретная голоморфная функция.

УДК: 517.962.22+517.547.9

Поступило в редакцию: 2 апреля 2018 г.

DOI: 10.1134/S0371968518030093


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2018, 302, 186–197

Реферативные базы данных:


© МИАН, 2024