Аннотация:
Хирургия Смейла на трехмерном торе позволяет получить из аносовского автоморфизма так называемый DA-диффеоморфизм. Неблуждающее множество DA-диффеоморфизма состоит из единственного двумерного растягивающегося аттрактора и конечного числа источниковых периодических орбит. Как было показано в работах В.З. Гринеса, Е.В. Жужомы и В.С. Медведева, динамика произвольного структурно устойчивого 3-диффеоморфизма с двумерным растягивающимся аттрактором обобщает динамику DA-диффеоморфизма: он существует только на трехмерном торе, двумерный аттрактор является его единственным нетривиальным базисным множеством, однако, кроме источниковых периодических орбит, его неблуждающее множество может содержать еще и седловые изолированные периодические орбиты. В настоящей работе описывается сценарий простого перехода (через элементарные бифуркации) от структурно устойчивого диффеоморфизма трехмерного тора с двумерным растягивающимся аттрактором к DA-диффеоморфизму. Ключевым моментом построения дуги является доказательство ручного вложения замыкания сепаратрис граничных периодических точек нетривиального аттрактора и изолированных седловых периодических точек. Этот результат демонстрирует принципиальное отличие динамики таких диффеоморфизмов от динамики трехмерных диффеоморфизмов Морса–Смейла, у которых возможно дикое вложение замыкания сепаратрис седловых периодических точек.
УДК:
517.9
Поступило в редакцию:22 марта 2019 г. После доработки:16 августа 2019 г. Принята к печати:21 октября 2019 г.