Аннотация:
Обсуждается вопрос, почему регуляризация высшими ковариантными производными, предложенная А.А. Славновым, оказалась отличным инструментом для исследования квантовых поправок в суперсимметричных калибровочных теориях. Например, она позволяет продемонстрировать, что $\beta $-функция в этих теориях дается интегралами от двойных полных производных, и во всех петлях построить перенормировочное предписание Новикова–Шифмана–Вайнштейна–Захарова. Она также была использована для вывода теоремы о неперенормировке для тройных калибровочно-духовых вершин. С помощью этой теоремы точная $\beta $-функция Новикова–Шифмана–Вайнштейна–Захарова была переписана в новой форме, которая выявила причину ее появления в теории возмущений. Кроме того, в случае использования регуляризации высшими ковариантными производными можно построить метод для получения $\beta $-функции $\mathcal N=1$ суперсимметричных калибровочных теорий, который в значительной степени упрощает вычисления. Этот метод иллюстрируется явным двухпетлевым вычислением, выполненным в произвольной $\xi $-калибровке.
УДК:
530.145
Поступило в редакцию:26 сентября 2019 г. После доработки:30 октября 2019 г. Принята к печати:4 января 2020 г.