Аннотация:
С помощью метода моментов выведены две теоремы о нормальной аппроксимации суммы $n$ случайных индикаторов в схеме серий, в которой совместное распределение индикаторов может меняться с ростом $n$. Первая теорема указывает условия сходимости при $n\to \infty $ всех моментов к моментам нормального распределения, а вторая теорема дает оценки точности нормальной аппроксимации в равномерной метрике. Для демонстрации эффективности результатов использованы задача о размещении частиц и задача о точности нормальной аппроксимации для числа решений случайных нелинейных включений.
УДК:519.214.5
Поступило в редакцию:14 сентября 2020 г. После доработки:13 апреля 2021 г. Принята к печати:29 июля 2021 г.