Аннотация:
В предыдущих работах автора была предложена конструкция многообразия модулей $D$-точных лагранжевых подмногообразий в алгебраических многообразиях относительно очень обильного дивизора. Точками таких многообразий являются классы гамильтоновой эквивалентности лагранжевых подмногообразий дополнений $X\setminus D$, где $D$ — дивизор из полной линейной системы; по самому своему определению многообразие модулей оказывается накрытием открытого подмножества в проективном пространстве $|D|$. Было показано, что такие многообразия являются гладкими и кэлеровыми, а также был предложен способ выделения стабильных компонент таких многообразий модулей, главное предполагаемое свойство которых — алгебраичность. В настоящей работе найдена стабильная компонента многообразия модулей лагранжевых сфер в многообразии флагов с обильным дивизором, равным половине антиканонического класса, и показано, что эта компонента является алгебраическим многообразием.
УДК:512.7+514.7+514.8
Поступило в редакцию:21 декабря 2021 г. После доработки:11 ноября 2022 г. Принята к печати:1 декабря 2022 г.