Аннотация:
Линейная система с переключениями — это система линейных дифференциальных уравнений, матрица которой зависит от времени и принимает значения из заданного множества матриц (множества управления). Система асимптотически устойчива, если все ее траектории стремятся к нулю при любом выборе матричной функции управления. Предположим, что интервалы переключения ограничены по длине в зависимости от действующей матрицы. Сохранит ли система устойчивость при снятии этих ограничений? При каких условиях устойчивость траекторий с короткими интервалами влечет за собой устойчивость всех траекторий? Ответы на эти вопросы получены в терминах “точек отрезания хвоста” линейного оператора. Представлен алгоритм их вычисления с помощью экспоненциальных аналогов полиномов Чебышева.
Ключевые слова:линейная система с переключениями, динамическая система, устойчивость, интервалы переключения, квазиполиномы, экстремальные полиномы, чебышевская система, выпуклая экстремальная задача.
УДК:517.518.862+517.537.7+517.929.21+517.587
Поступило в редакцию:30 июля 2022 г. После доработки:29 октября 2022 г. Принята к печати:13 декабря 2022 г.