Аннотация:
Рассматривается изопериметрическая задача на финслеровом аналоге плоскости Лобачевского — группе Ли собственных аффинных преобразований прямой с левоинвариантной финслеровой структурой, порожденной выпуклым компактным множеством из алгебры Ли с нулем во внутренности. Форма объема также выбрана левоинвариантной. Данная задача сформулирована как задача оптимального управления. Оптимальные изопериметрические контуры найдены явно в терминах функций выпуклой тригонометрии с использованием принципа максимума Понтрягина. Обобщенное изопериметрическое неравенство представлено в параметрической форме.