Аннотация:
В [С.Ю.Доброхотов, В.Е.Назайкинский, А.В.Цветкова, Труды МИАН, 2023] и [S.Yu.Dobrokhotov, D.S.Minenkov, M.M.Votiakova,
Russ. J. Math. Phys., 2024] построены асимптотические решения нелинейной системы уравнений мелкой воды, соответствующие
береговым волнам. В настоящей работе приводятся асимптотические формулы для нелинейных береговых волн в более удобных для конкретных ситуаций координатах, исследуется зависимость параметров нелинейных волн, в частности, амплитуды, при которой волны не обрушаются, и рассматриваются содержательные примеры. Также обсуждается связь построенных решений с траекториями гамильтоновой системы, коэффициенты которой вырождаются на границе рассматриваемой области и в которой можно ввести быстрые и медленными переменные. Такие траектории образуют "вырождающиеся бильярды с полужесткими стенками", которые в более общем случае были изучены в недавней работе [S.Bolotin, D.Treschev, Another Billiard Problem, Russ. J. Math. Phys., 2024].
Ключевые слова:двумерная система мелкой воды, береговые волны, волновое уравнение с вырождающимися коэффициентами, локализованные асимптотические собственные функции (квазимоды), почти интегрируемые системы Гамильтона, вырожденные бильярды с полужесткими стенками