RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2004, том 244, страницы 297–304 (Mi tm450)

Эта публикация цитируется в 4 статьях

Minimal Sets in Almost Equicontinuous Systems

W. Huang, Xiangdong Ye

University of Science and Technology of China

Аннотация: Supplying necessary and sufficient conditions such that a transitive system (as a subsystem of the Bebutov system) is uniformly rigid and using the fact that each transitive uniformly rigid system has an almost equicontinuous extension, we construct almost equicontinuous systems containing $n$ ($n\in\mathbb N$), countably many, and uncountably many minimal sets, which serve as new examples of almost equicontinuous systems. Our method is quite general as each transitive uniformly rigid system has a factor that is a subsystem of the Bebutov system. Moreover, we explore how the number of connected components in a transitive pointwise recurrent system is related to the connectedness of the minimal sets contained in the system.

УДК: 517.91+517.93

Поступило в октябре 2000 г.

Язык публикации: английский


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2004, 244, 280–287

Реферативные базы данных:


© МИАН, 2024