RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2007, том 258, страницы 185–200 (Mi tm483)

Эта публикация цитируется в 4 статьях

Hyperbolic Carathéodory Conjecture

S. L. Tabachnikova, V. Yu. Ovsienkob

a Department of Mathematics, Pennsylvania State University
b Institut Camille Jordan, Université Claude Bernard Lyon 1

Аннотация: A quadratic point on a surface in $\mathbb R\mathrm P^3$ is a point at which the surface can be approximated by a quadric abnormally well (up to order 3). We conjecture that the least number of quadratic points on a generic compact nondegenerate hyperbolic surface is 8; the relation between this and the classic Carathéodory conjecture is similar to the relation between the six-vertex and the four-vertex theorems on plane curves. Examples of quartic perturbations of the standard hyperboloid confirm our conjecture. Our main result is a linearization and reformulation of the problem in the framework of the 2-dimensional Sturm theory; we also define a signature of a quadratic point and calculate local normal forms recovering and generalizing the Tresse–Wilczynski theorem.

УДК: 514.7

Поступило в ноябре 2006 г.

Язык публикации: английский


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2007, 258, 178–193

Реферативные базы данных:


© МИАН, 2024