RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2007, том 259, страницы 77–85 (Mi tm570)

Эта публикация цитируется в 11 статьях

Shock Waves for the Burgers Equation and Curvatures of Diffeomorphism Groups

B. A. Khesina, G. Misiołekb

a Department of Mathematics, University of Toronto
b Department of Mathematics, University of Notre Dame

Аннотация: We establish a simple relation between certain curvatures of the group of volume-preserving diffeomorphisms and the lifespan of potential solutions to the inviscid Burgers equation before the appearance of shocks. We show that shock formation corresponds to a focal point of the group of volume-preserving diffeomorphisms regarded as a submanifold of the full diffeomorphism group and, consequently, to a conjugate point along a geodesic in the Wasserstein space of densities. This relates the ideal Euler hydrodynamics (via Arnold's approach) to shock formation in the multidimensional Burgers equation and the Kantorovich–Wasserstein geometry of the space of densities.

Поступило в феврале 2007 г.

Язык публикации: английский


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2007, 259, 73–81

Реферативные базы данных:


© МИАН, 2024