RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2008, том 260, страницы 227–247 (Mi tm597)

Эта публикация цитируется в 22 статьях

О свойствах отображений, связанных с обратными задачами Штурма–Лиувилля

А. М. Савчук, А. А. Шкаликов

Московский государственный университет им. М. В. Ломоносова, механико-математический факультет

Аннотация: Пусть $L_\mathrm D$ – оператор Штурма–Лиувилля на конечном отрезке $[0,\pi]$, порожденный дифференциальным выражением $Ly=-y''+q(x)y$ и краевыми условиями Дирихле. Предполагается, что потенциал $q$ принадлежит пространству Соболева $W^\theta_2[0,\pi]$ при некотором $\theta\geq-1$. Известно, что по спектру и нормировочным числам оператора $L_\mathrm D$ можно однозначно восстановить потенциал $q$. В настоящей работе строятся специальные пространства последовательностей $\widehat l_2^{\,\theta}$, в которые помещаются регуляризованные спектральные данные $\{s_k\}_{-\infty}^\infty$ оператора $L_\mathrm D$. Доказана основная теорема: отображение $Fq=\{s_k\}$ из пространства $W^\theta_2$ в $\widehat l_2^{\,\theta}$ является слабо нелинейным (т.е. компактным возмущением линейного отображения). Аналогичный результат получен для оператора $L_\mathrm{DN}$, порожденного тем же дифференциальным выражением и краевыми условиями Дирихле–Неймана. Эти результаты служат основой для решения задачи о равномерной устойчивости восстановления потенциала, которая ранее в литературе не рассматривалась. Результаты о равномерной устойчивости формулируются здесь, но их доказательство будет представлено в другой работе.

УДК: 517.984

Поступило в августе 2007 г.


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2008, 260, 218–237

Реферативные базы данных:


© МИАН, 2024