RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2006, том 252, страницы 167–183 (Mi tm70)

Hyperbolic 3-Manifolds with Geodesic Boundary: Enumeration and Volume Calculation

A. D. Mednykha, C. Petroniob

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b University of Pisa

Аннотация: We describe a natural strategy to enumerate compact hyperbolic 3-manifolds with geodesic boundary in increasing order of complexity. We show that the same strategy can be applied in order to analyze simultaneously compact manifolds and finite-volume manifolds with toric cusps. In contrast, we show that if one allows annular cusps, the number of manifolds grows very rapidly and our strategy cannot be employed to obtain a complete list. We also carefully describe how to compute the volume of our manifolds, discussing formulas for the volume of a tetrahedron with generic dihedral angles in a hyperbolic space.

УДК: 515.162.3

Поступило в ноябре 2004 г.

Язык публикации: английский


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2006, 252, 155–171

Реферативные базы данных:


© МИАН, 2024