RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2008, том 263, страницы 143–158 (Mi tm789)

Эта публикация цитируется в 9 статьях

Bounds for Codes by Semidefinite Programming

O. R. Musin

Department of Mathematics, University of Texas at Brownsville

Аннотация: Delsarte's method and its extensions allow one to consider the upper bound problem for codes in two-point homogeneous spaces as a linear programming problem with perhaps infinitely many variables, which are the distance distribution. We show that using as variables power sums of distances, this problem can be considered as a finite semidefinite programming problem. This method allows one to improve some linear programming upper bounds. In particular, we obtain new bounds of one-sided kissing numbers.

УДК: 519.14+519.72

Поступило в августе 2008 г.

Язык публикации: английский


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2008, 263, 134–149

Реферативные базы данных:


© МИАН, 2024