RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2006, том 253, страницы 277–295 (Mi tm99)

Эта публикация цитируется в 13 статьях

Residual Kernels with Singularities on Coordinate Planes

A. V. Shchupleva, A. K. Tsikha, A. Ygerb

a Krasnoyarsk State University
b Université Bordeaux 1

Аннотация: A finite collection of planes $\{E_\nu \}$ in $\mathbb C^d$ is called an atomic family if the top de Rham cohomology group of its complement is generated by a single element. A closed differential form generating this group is called a residual kernel for the atomic family. We construct new residual kernels in the case when $E_\nu$ are coordinate planes such that the complement $\mathbb C^d\setminus \bigcup E_\nu$ admits a toric action with the orbit space being homeomorphic to a compact projective toric variety. They generalize the well-known Bochner–Martinelli and Sorani differential forms. The kernels obtained are used to establish a new formula of integral representations for functions holomorphic in Reinhardt polyhedra.

УДК: 517.552

Поступило в октябре 2005 г.

Язык публикации: английский


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2006, 253, 256–274

Реферативные базы данных:


© МИАН, 2024