Аннотация:
Метод обратной задачи рассеяния применяется к нелинейному уравнению Шредингера пятого порядка с ненулевыми граничными условиями, которое сводится к нескольким интегрируемым уравнениям. Сначала систематически исследуется матричная задача Римана–Гильберта для нелинейного уравнения Шредингера пятого порядка с ненулевыми граничными условиями на бесконечности. Обратная задача решена с привлечением матричной задачи Римана–Гильберта. Строятся явные выражения для решений в виде безотражательных потенциалов. Приводятся формулы следа и тета-условия. В частности, дан анализ решений с полюсами первого и второго порядков для нелинейного уравнения Шредингера пятого порядка с ненулевыми граничными условиями. В заключение проводится обсуждение графиков, характеризующих динамику полученных решений. Представленные результаты полезны для объяснения нелинейных волновых явлений и для пополнения знаний о них в различных разделах нелинейной физики.
Ключевые слова:нелинейное уравнение Шредингера пятого порядка, обратная задача рассеяния,
многосолитонные решения, задача Римана–Гильберта.