Расщепленный оператор Казимира и решения уравнения Янга–Бакстера для супералгебр Ли $osp(M|N)$ и $s\ell(M|N)$, высшие операторы Казимира и параметры Вожеля
Аннотация:
Для супералгебр Ли $osp(M|N)$ и $s\ell(M|N)$ найдены характеристические тождества для расщепленного оператора Казимира в определяющем и присоединенном представлениях. С помощью этих тождеств построены проекторы на инвариантные подпространства представления $T^{\otimes 2}$ супералгебр $osp(M|N)$ и $s\ell(M|N)$ в двух случаях: когда $T$ – определяющее и присоединенное представления. В определяющем представлении дано новое выражение для $osp(M|N)$ и $s\ell(M|N)$ инвариантных решений уравнения Янга–Бакстера в виде рациональных функций от расщепленного оператора Казимира. В присоединенном представлении найденные характеристические тождества и инвариантные проекторы рассматриваются с позиции универсального описания супералгебр Ли с использованием параметризации Вожеля. Построена универсальная производящая функция для высших операторов Казимира супералгебр $osp(M|N)$ и $s\ell(M|N)$ в присоединенном представлении.