RUS  ENG
Полная версия
ЖУРНАЛЫ // Теоретическая и математическая физика // Архив

ТМФ, 2022, том 213, номер 1, страницы 129–148 (Mi tmf10233)

Квазитреугольные структуры на суперянгиане и квантовой петлевой супералгебре и разностные уравнения

В. А. Стукопинabc

a Московский физико-технический институт, Долгопрудный, Московская обл., Россия
b Южный математический институт Владикавказского научного центра Российской академии наук, Владикавказ, Россия
c Московский центр непрерывного математического образования, Москва, Россия

Аннотация: В рамках подхода Толедано-Ларедо и Гаутама рассматриваются структуры тензорных категорий на аналогах категории $\mathfrak{O}$ для представлений суперянгиана $Y_{\hbar}(A(m,n))$ специальной линейной супералгебры Ли и квантовой петлевой супералгебры $U_q(LA(m,n))$, исследуется связь между ними. Основным результатом работы является конструкция изоморфизма в категории супералгебр Хопфа между пополнениями суперянгиана и квантовой петлевой супералгебры, наделенными так называемыми дринфельдовскими коумножениями. Формулируется теорема об эквивалентности тензорных категорий модулей суперянгиана и квантовой петлевой супералгебры, усиливающая предыдущий результат. Также описывается связь между квазитреугольными структурами и абелевыми разностными уравнениями, которые определяются абелевыми частями универсальных $R$-матриц.

Ключевые слова: янгиан супералгебры Ли, квантовая петлевая супералгебра, янгианный модуль, категория $\mathfrak{O}$ представлений, супералгебра Ли, универсальная $R$-матрица, супералгебра Хопфа, тензорная категория, квазитреугольная структура, разностные уравнения.

MSC: 17B37

Поступило в редакцию: 30.12.2021
После доработки: 11.01.2022

DOI: 10.4213/tmf10233


 Англоязычная версия: Theoretical and Mathematical Physics, 2022, 213:1, 1423–1440

Реферативные базы данных:


© МИАН, 2024