Аннотация:
В рамках подхода Толедано-Ларедо и Гаутама рассматриваются структуры тензорных категорий на аналогах категории $\mathfrak{O}$ для представлений суперянгиана $Y_{\hbar}(A(m,n))$ специальной линейной супералгебры Ли и квантовой петлевой супералгебры $U_q(LA(m,n))$, исследуется связь между ними. Основным результатом работы является конструкция изоморфизма в категории супералгебр Хопфа между пополнениями суперянгиана и квантовой петлевой супералгебры, наделенными так называемыми дринфельдовскими коумножениями. Формулируется теорема об эквивалентности тензорных категорий модулей суперянгиана и квантовой петлевой супералгебры, усиливающая предыдущий результат. Также описывается связь между квазитреугольными структурами и абелевыми разностными уравнениями, которые определяются абелевыми частями универсальных $R$-матриц.