Аннотация:
Рассматривается модуляционная неустойчивость квазигармонической продольной волны, распространяющейся в однородном стержне, погруженном в нелинейно-упругую среду. Динамическое поведение стержня определяется теорией Миндлина–Германа, уточняющей техническую теорию стержней. Точность модели достигается за счет описания движения частиц стержня в поперечном направлении при отказе от гипотезы, что поперечные деформации при осевом растяжении или сжатии пропорциональны продольной деформации. Система уравнений, описывающая продольные колебания стержня, сводится к одному нелинейному уравнению четвертого порядка относительно продольного смещения частиц стержня. Методом многих масштабов получено нелинейное уравнение Шредингера – одно из основных уравнений нелинейной волновой динамики. С помощью критерия Лайтхилла определены области модуляционной неустойчивости. Показано, как границы этих областей смещаются при изменении параметров, характеризующих упругие свойства материала стержня и нелинейность среды. Проанализировано влияние параметров системы на волновые пакеты и основные параметры солитонов огибающих (амплитуда, скорость, ширина).