Аннотация:
Ферромагнитные диссипативные системы, описывающиеся изотропным уравнением Ландау–Лифшица–Гильберта, изучаются с точки зрения их пространственно локализованных динамических возбуждений. В частности, строятся диссипативные солитонные решения нелокального нелинейного уравнения Шредингера, в которое преобразуется уравнение Ландау–Лифшица–Гильберта. Для доказательства существования этих решений при достаточно малом рассеянии используется теория Мельникова. Для проверки достоверности полученных аналитических результатов применяются псевдоспектральные численные методы и физически-информированные нейронные сети в схеме машинного обучения. Такие локализованные структуры были обнаружены экспериментально в магнитных системах и наблюдались в наноосцилляторах, а магнитные капли, описывающиеся диссипативными солитонами, были исследованы теоретически и наблюдались в эксперименте.