Аннотация:
Сформулирован класс матричных спектральных задач высокого порядка, и с помощью уравнений нулевой кривизны получены соответствующие интегрируемые иерархии. Для задания гамильтоновых структур полученных иерархий и, таким образом, для исследования их интегрируемости по Лиувиллю используется следовое тождество. Наглядными примерами таких иерархий являются связанные нелинейные уравнения Шредингера и связанные модифицированные уравнения Кортевега–де Фриза с четырьмя компонентами.