Аннотация:
Исследуется модифицированное уравнение Кортевега–де Фриза отрицательного порядка. Показано, что модифицированное уравнение Кортевега–де Фриза отрицательного порядка может быть проинтегрировано методом обратной спектральной задачи. Определена эволюция спектральных данных оператора Дирака с периодическим потенциалом, связанного с решением модифицированного уравнения Кортевега–де Фриза отрицательного порядка. Полученные результаты позволяют применить метод обратной задачи для решения модифицированного уравнения Кортевега–де Фриза отрицательного порядка в классе периодических функций. Получены важные следствия об аналитичности и о периоде решения по пространственной переменной. Показано, что построенная с помощью системы уравнений Дубровина–Трубовица и формулы первого следа функция удовлетворяет модифицированному уравнению Кортевега–де Фриза отрицательного порядка. Доказана разрешимость задачи Коши для бесконечной системы дифференциальных уравнений Дубровина–Трубовица в классе трижды непрерывно дифференцируемых периодических функций.