Аннотация:
Метод некоммутативного интегрирования линейных дифференциальных уравнений в частных производных [1] обобщен на случай так называемых функциональных алгебр, для которых коммутатор образующих элементов является нелинейной функцией этих образующих. Линейная функция соответствует алгебре Ли, квадратичная – так называемым квадратичным алгебрам, нашедшим широкие применения в квантовой теории поля. Рассмотрен нетривиальный пример интегрирования уравнения Клейна–Гордона в искривленном пространстве, не допускающем разделение переменных. Проведена классификация четырех- и пятимерных квадратичных алгебр специальной структуры.
Предложен метод размерной редукции многомерного некоммутативно интегрируемого
уравнения в частных производных. Редуцированное уравнение обладает в общем
случае сложной функциональной алгеброй симметрии. Метод позволяет проинтегрировать редуцированное уравнение без использования функциональной алгебры этого уравнения в явном виде.