Аннотация:
Рассмотрена задача Коши для $2+1$-мерного нелинейного уравнения Бойти–Леона–Пемпинелли (БЛП) в рамках метода обратной задачи. Получены уравнения эволюции резольвенты, решений Йоста и данных рассеяния двумерного дифференциального оператора Клейна–Гордона с переменными коэффициентами, порождаемые рассматриваемой системой уравнений БЛП. Выявлены дополнительные условия на данные рассеяния, обеспечивающие устойчивость решений задачи Коши. Указаны рекуррентная процедура построения полиномиальных интегралов движения и производящая функция интегралов движения в терминах спектральных данных.