Аннотация:
Интегрируемая структура, лежащая в основе уравнений Виттена–Дайкграфа–Верлинде–Верлинде (ВДВВ), отождествляется с результатом редукции задачи Римана–Гильберта
для однородной группы петель $\widehat{GL}(N,\mathbb C)$. Редукция требует, чтобы одевающие матрицы были неподвижными точками автоморфизма группы петель порядка два, что дает подиерархию иерархии $\widehat{gl}(N,\mathbb C)$, содержащую только нечетные потоки. Модель содержит вирасоровскую симметрию, а наложение вирасоровских связей обеспечивает свойство однородности структуры Дарбу–Егорова. Матрицы одевания редуцированной модели дают решения уравнений ВДВВ.