RUS  ENG
Полная версия
ЖУРНАЛЫ // Теоретическая и математическая физика // Архив

ТМФ, 1993, том 94, номер 2, страницы 200–212 (Mi tmf1417)

Эта публикация цитируется в 8 статьях

Векторные теоремы сложения и функции Бейкера–Ахиезера

В. М. Бухштаберa, И. М. Кричеверb

a Всесоюзный научно-исследовательский институт физико-технических и радиотехнических измерений Госстандарта СССР
b Институт теоретической физики им. Л. Д. Ландау РАН

Аннотация: Обсуждаются функциональные уравнения, естественно возникающие в различных проблемах современной математической физики. Введены понятия $N$-мерной теоремы сложения для функций скалярного аргумента и уравнения Коши ранга $N$ для функции $g$-мерного аргумента, обобщающие классическое функциональное уравнение Коши. Доказано, что при $N=2$ общее аналитическое решение этих уравнений задается функцией Бейкера–Ахиезера алгебраической кривой рода 2. Показано также, что $\theta$-функции дают решения уравнения Коши ранга $N$ для функций $g$-мерного аргумента, где $N\le 2^{g}$ в случае общего $g$-мерного абелева многообразия и $N\le g$ в случае якобиева многообразия алгебраической кривой рода $g$. Выдвинута гипотеза, что функциональное уравнение Коши ранга $g$ для функции $g$-мерного аргумента является характеристическим для $\theta$-функций якобиева многообразия алгебраической кривой рода $g$, т. е. решает проблему Римана–Шоттки.

Поступило в редакцию: 08.05.1992


 Англоязычная версия: Theoretical and Mathematical Physics, 1993, 94:2, 142–149

Реферативные базы данных:


© МИАН, 2024