Аннотация:
Завершается построение алгебраического комплекса, состоящего из пространств дифференциалов евклидовых метрических величин, для четырехмерных кусочно-линейных многообразий. В предположении, что комплекс является ациклическим, исследуется, как меняется его кручение при перестройках триангуляции многообразия. Сначала выписываются формулы для перестроек $3\to3$ и $2\leftrightarrow4$, основанные на результатах двух предшествующих работ, а затем подробно изучаются перестройки $1\leftrightarrow5$. На основе этого получается формула для инварианта четырехмерного многообразия. В качестве примера приводится подробное вычисление инварианта для сферы $S^4$; в частности, комплекс действительно оказывается ациклическим.
Ключевые слова:кусочно-линейные многообразия, инварианты многообразий, движения Пахнера, дифференциальные тождества для евклидовых симплексов, ациклические комплексы.