RUS  ENG
Полная версия
ЖУРНАЛЫ // Теоретическая и математическая физика // Архив

ТМФ, 2005, том 144, номер 2, страницы 410–422 (Mi tmf1866)

Эта публикация цитируется в 3 статьях

Пертурбативный анализ взаимодействия волн в нелинейных системах

А. Векслерa, Й. Зармиab

a Ben-Gurion University of the Negev
b Jacob Blaustein Institute for Desert Research

Аннотация: Предложен новый способ преодоления препятствий к асимптотической интегрируемости в возмущенных нелинейных дифференциальных уравнениях в частных производных в рамках метода нормальных форм (НФ) для случая многоволновых решений. Вместо того чтобы целиком включать препятствие в НФ, туда включается только его резонансная часть (если таковая существует), а остаток относится к гомологическому уравнению. В результате НФ остается интегрируемой, а ее решения сохраняют характер решений невозмущенного уравнения. Произвол в разложении используется для построения канонических препятствий, которые ограничены областью взаимодействия волн. Для солитонных решений (например, в уравнении Кортевега–де Фриза) область взаимодействия является конечной областью вокруг начала координат; канонические препятствия при этом не порождают секулярных членов в гомологическом уравнении. Когда область взаимодействия является бесконечной (или полубесконечной – например, в решениях уравнения Бюргерса типа волновых фронтов), препятствия могут содержать резонансные члены. Препятствия порождают волны нового типа, которые нельзя записать в виде функционалов решений НФ. Когда препятствие дает резонансный вклад в НФ, происходит нестандартная корректировка волновой скорости.

Ключевые слова: нелинейные эволюционные уравнения, взаимодействия волн, препятствия к асимптотической интегрируемости, возмущенное уравнение Кортевега–де Фриза, возмущенное уравнение Бюргерса.

DOI: 10.4213/tmf1866


 Англоязычная версия: Theoretical and Mathematical Physics, 2005, 144:2, 1227–1237

Реферативные базы данных:


© МИАН, 2024