Аннотация:
Сформулировано уравнение Шредингера с дельта-образным потенциалом,
действующим в состоянии с $l=1$. Решения этого уравнения согласуются
с решениями, полученными в [1] другим методом для произвольного $l$.
Установлено, что метрика в пространстве векторов состояния положительна
для состояний непрерывного спектра и отрицательна для связанного состояния. Поэтому для притягивающего потенциала связанное
состояние следует исключить из пространства состояний.