RUS  ENG
Полная версия
ЖУРНАЛЫ // Теоретическая и математическая физика // Архив

ТМФ, 1979, том 38, номер 1, страницы 101–114 (Mi tmf2628)

Эта публикация цитируется в 2 статьях

Тензор неоднородной динамической восприимчивости анизотропного ферромагнетика Гейзенберга и неравенства Боголюбова. I. Одночастичная матричная функция Грина и поперечные компоненты тензора восприимчивости

Ю. Г. Рудой


Аннотация: Методом двухвременных температурных функций Грина рассмотрен тензор неоднородной динамической восприимчивости $\chi^{\alpha\beta}(k,E)$ обобщенной анизотропной трехмерной модели Гейзенберга со спином $1/2$. Поперечные компоненты ($\alpha,\beta=x,y$) получены с помощью одночастичной матричной функции Грина в обобщенном приближении Хартри–Фока. На основе приближения Тябликова дан анализ зависимости диагональных компонент $\chi^{x,y}_k$ в статическом пределе $E=0$ от квазиимпульса, анизотропии и внешнего поля в широком интервале температур. Показано, в частности, что для вырожденных моделей типа “легкая плоскость” (в том числе изотропной), в отсутствие поля имеющих бесщелевой спектр, одна или обе компоненты $\chi^{x,y}_k$ расходятся при $k=0$ в ферромагнитной области, а в парамагнитной имеют вид Орнштейна–Цернике. Полученные результаты находятся в соответствии со строгими неравенствами Боголюбова, для которых построено обобщение на случай произвольной анизотропии.

Поступило в редакцию: 09.06.1978


 Англоязычная версия: Theoretical and Mathematical Physics, 1979, 38:1, 68–78

Реферативные базы данных:


© МИАН, 2024