Аннотация:
Доказано, что, в отличие от алгебры $\mathfrak{po}(2n|m)$, ее фактор по центру – супералгебра Ли $\mathfrak{h}(2n|m)$ гамильтоновых векторных полей с полиномиальными коэффициентами – имеет исключительные дополнительные деформации при $(2n|m)=(2|2)$ и только в этой суперразмерности. Этот результат связывается с полным описанием квантований (и деформаций) антискобки (называемой также скобкой Схоутена или Бюттен). Оказывается, что пространство, в котором действует
деформированная алгебра Ли (результат квантования алгебры Пуассона), совпадает с простейшим пространством, в котором действует алгебра Ли коммутационных соотношений. Это совпадение не обязательно в случае супералгебр Ли.
Поступило в редакцию: 08.04.2000 После доработки: 02.10.2000