Аннотация:
Исследуется обобщенная периодическая модель Андерсона, описывающая две группы сильно коррелированных ($d$ и $f$) электронов с локальной гибридизацией состояний и перескоком $d$-электронов между узлами решетки, с точки зрения возможности появления в ней связанных электронных пар. Атомный предел этой модели допускает точное решение на основе метода канонического преобразования. Ренормированный энергетический спектр локальной модели делится на низкоэнергетическую и высокоэнергетическую части, разделенные интервалом порядка энергии кулоновского отталкивания электронов. Проецирование гамильтониана на состояния низкоэнергетической части спектра приводит к появлению членов парного взаимодействия электронов, принадлежащих $d$- и $f$-орбиталям, и к возможности их туннелирования между этими орбиталями. При этом слагаемые гамильтониана, обусловленные ионными энергиями и перескоками, оказываются сильно коррелированными и реализуются только между состояниями, которые не заполнены дважды. Полученный гамильтониан более не
содержит сильных взаимодействий, которые оказываются подавленными квантовыми флуктуациями гибридизации состояний. После его линеаризации в приближении среднего поля установлен энергетический спектр квазичастиц и намечен способ самосогласования параметров порядка сверхпроводящей фазы. Для простоты все расчеты сделаны для симметричной периодической модели Андерсона, в которой энергии дважды заполненных $d$- и $f$-орбиталей предполагаются одинаковыми.
Поступило в редакцию: 21.11.2000 После доработки: 15.01.2001