Аннотация:
Рассмотрено броуновское движение квантовой частицы в термостате,
имеющем конечное время корреляции $\tau_c$. Получены немарковские уравнения Ланжевена для стационарного неравновесного состояния. При низких температурах $T$ термостата время корреляции $\tau_c=\hbar/2\pi T$ достаточно велико. Показано, что учет затухания $\gamma$ импульса частицы на временах корреляции $\tau_c$: $\gamma\tau_c\simeq1$, приводит к осциллирующей температурной зависимости коэффициента релаксации $\gamma(1/T)$ в области низких температур термостата.