RUS  ENG
Полная версия
ЖУРНАЛЫ // Теоретическая и математическая физика // Архив

ТМФ, 2000, том 123, номер 2, страницы 237–263 (Mi tmf600)

Эта публикация цитируется в 3 статьях

Неавтономные гамильтоновы системы, связанные с высшими интегралами Хитчина

А. М. Левинab, М. А. Ольшанецкийca

a Max Planck Institute for Mathematics
b Институт океанологии им. П. П. Ширшова РАН
c Институт теоретической и экспериментальной физики им. А. И. Алиханова

Аннотация: Описываются неавтономные гамильтоновы системы, возникающие из интегрируемых систем Хитчина. Интегралы движения Хитчина зависят от $\mathcal W$-структур базисной кривой. Параметры $\mathcal W$-структур играют роль времен. В частности, квадратичные интегралы зависят от комплексной структуры ($\mathcal W_2$-структуры) базисной кривой, а времена являются координатами на пространстве Тейхмюллера. Соответствующие потоки являются сохраняющими монодромию уравнениями, такими как уравнения Шлезингера, уравнения Пенлеве VI и их обобщения. Уравнения, отвечающие высшим интегралам, являются условиями сохранения монодромии при изменении $\mathcal W_k$-структур ($k>2$). Они выводятся посредством симплектической редукции из калибровочной теории поля на базисной кривой, взаимодействующей с $\mathcal W_k$-гравитацией. Как следствие из предложенной теории получаются классические тождества Уорда.

DOI: 10.4213/tmf600


 Англоязычная версия: Theoretical and Mathematical Physics, 2000, 123:2, 609–632

Реферативные базы данных:


© МИАН, 2024