Аннотация:
Исследовано многообразие комплексных собственных функций Блоха–Флоке для нулевого уровня двумерного нерелятивистского оператора Паули, описывающего движение заряженной частицы в периодическом магнитном поле с нулевым потоком через элементарную ячейку и нулевым электрическим полем. Это многообразие полностью изучено для широкого класса алгебро-геометрических операторов. В случае ненулевого потока основное состояние оператора Паули для быстроубывающих на бесконечности полей было найдено Аароновым и Кашером, а для периодических полей – Дубровиным и Новиковым. Для полей с ненулевым потоком алгебро-геометрические операторы ранее известны не были, поскольку комплексное продолжение “магнитных” собственных функций Блоха–Флоке очень плохо ведет себя на бесконечности. Построено несколько неособых алгебро-геометрических периодических полей (с нулевым потоком через элементарную ячейку), отвечающих комплексным римановым поверхностям рода ноль. Для более высоких родов построены периодические операторы с интересными магнитными полями и эффектом Ааронова–Бома. Алгебро-геометрические решения рода ноль порождают также солитоноподобные неособые магнитные поля, поток которых через диск радиуса $R$ пропорционален $R$ (медленно расходится при $R\to\infty$). Для этого случая найдены наиболее интересные основные состояния в гильбертовом пространстве $L_2(\mathbb{R}^2)$.
Ключевые слова:двумерный оператор Паули, задача при одной энергии, алгебро-геометрическое решение, ненулевой магнитный поток, основное состояние, собственная функция Блоха–Флоке, эффект Ааронова–Бома.