Аннотация:
Рассмотрен процесс распространения электромагнитных импульсов в изотропных средах с учетом эффектов нелинейности третьего порядка. Предложено развитие метода преобразования уравнений Максвелла на основе полного набора проекционных операторов. Эти операторы отвечают ветвям волновой дисперсии (в волноводе или в материальной среде) и учитывают направление распространения. Наиболее важным результатом применения метода является система уравнений, которые описывают одномерную динамику импульсов, распространяющихся в противоположных направлениях, без учета дисперсии. Выведены соответствующие уравнения самодействия. Таким образом, в рассмотрение вводится дисперсия в среде; показано, как при этом изменяются операторы. Получены обобщенные уравнения коротких импульсов Шафера–Вайна, учитывающие распространение волн в обоих направлениях. В случае трехмерной задачи основное внимание уделено оптическим волокнам
с дисперсией материала, выведены и решены численно уравнения взаимодействия мод волновода. Обсуждаются эффекты взаимодействия однонаправленных импульсов. Рассматривается метод численного интегрирования для связанных нелинейных уравнений Шредингера и применяются разработанные схемы вычислений.