Аннотация:
Сформулирован метод представления решений однородных уравнений второго порядка в форме функционального интеграла, или интеграла по путям. В качестве примера получены решения уравнений второго порядка с постоянными коэффициентами и линейным потенциалом. Метод применен к нахождению общих решений стационарного уравнения Шредингера. Показано, как находятся спектр и собственные функции уравнения квантового осциллятора. Получено решение стационарного уравнения Шредингера в квазиклассическом приближении, не имеющее особенностей в точке поворота. В этом приближении найден коэффициент прохождения сквозь потенциальный барьер. Получено представление амплитуды упругого потенциального рассеяния в форме функционального интеграла.