Аннотация:
Рассмотрены специфические особенности и принципиальные различия в поведении энергетических спектров шредингеровской и дираковской частиц в регуляризованном “кулоновском” потенциале $V_\delta(z)=-q/(|z|+\delta)$ как функции параметра обрезания $\delta$ в ($1+1$) измерении. Показано, что в таком одномерном “атоме водорода” в релятивистском случае при $\delta\ll 1$ дискретный спектр становится квазипериодической функцией $\delta$, причем этот эффект неаналитически зависит от константы связи и не имеет нерелятивистского аналога. Это свойство дираковской спектральной задачи явно демонстрирует наличие физически содержательного энергетического спектра при произвольно малом $\delta>0$, но в то же время и отсутствие регулярного предельного перехода к $\delta\to 0$ при всех ненулевых $q$. Также показано, что аналогичным свойством квазипериодичности по параметру обрезания обладает и трехмерная кулоновская задача при $q=Z\alpha>1$, т. е. когда необходимо специально уточнять область определения дираковского гамильтониана с нерегуляризованным потенциалом путем задания граничных условий при $r\to 0$ или другими способами.