RUS  ENG
Полная версия
ЖУРНАЛЫ // Теоретическая и математическая физика // Архив

ТМФ, 2013, том 176, номер 2, страницы 205–221 (Mi tmf8515)

Эта публикация цитируется в 11 статьях

Фазовая топология одной неприводимой интегрируемой задачи динамики твердого тела

П. Е. Рябов

Финансовый университет, Москва, Россия

Аннотация: Рассматривается интегрируемая система с тремя степенями свободы, для которой В. В. Соколовым и А. В. Цыгановым указано представление Лакса. Представление Лакса обобщает $L$$A$-пару для гиростата Ковалевской в двойном поле, найденную A. Г. Рейманом и M. A. Семеновым-Тян-Шанским. Приводятся явные формулы для (независимых почти всюду) дополнительных первых интегралов $K$ и $G$, которые функционально связаны с коэффициентами спектральной кривой $L$$A$-пары Соколова–Цыганова. Благодаря такой форме дополнительных интегралов $K$, $G$ и параметрической редукции Харламова выделены аналитически два инвариантных четырехмерных подмногообразия, на которых индуцированная динамическая система является почти всюду гамильтоновой с двумя степенями свободы. Система уравнений, задающая одно из инвариантных подмногообразий, является обобщением инвариантных соотношений интегрируемого случая Богоявленского – вращения намагниченного твердого тела в однородном гравитационном и магнитном полях. Для описания фазовой топологии всей системы в целом используется метод критических подсистем. Для каждой подсистемы построены бифуркационные диаграммы и указаны бифуркации торов Лиувилля как внутри подсистем, так и во всей системе в целом.

Ключевые слова: вполне интегрируемые гамильтоновы системы, спектральная кривая, отображение момента, бифуркационная диаграмма, бифуркации торов Лиувилля.

Поступило в редакцию: 13.02.2013

DOI: 10.4213/tmf8515


 Англоязычная версия: Theoretical and Mathematical Physics, 2013, 176:2, 1000–1015

Реферативные базы данных:


© МИАН, 2024