Аннотация:
Исследуется вопрос о локализации точных решений трехмерных уравнений Шредингера, представленных в виде произведения функции Эйри (решения Берри–Балажа) и функции Бесселя, известных
в параксиальном приближении в оптике как лучи Эйри–Бесселя. Для этого такие решения представляются в виде канонического оператора Маслова на специальных лагранжевых многообразиях, действующего на финитные функции. Затем используется один результат Хёрмандера, позволяющий с помощью формулы коммутации псевдодифференциального оператора и канонического оператора Маслова “вынести” финитные амплитуды из-под канонического оператора, что позволяет получить эффективные формулы, сохраняющие структуру решения, основанную на функциях Эйри и Бесселя. Обсуждается влияние дисперсионных эффектов на полученные решения.