Аннотация:
Квантовая фазовая модель введена как предел сильной связи сильно коррелированной $q$-бозонной обменной модели. Описано общее решение модели, а скалярные произведения векторов состояния представлены в детерминантной форме. Представление векторов состояния через функции Шура позволило получить комбинаторную интерпретацию скалярных произведений в терминах наборов самоизбегающих решеточных путей. Показано, что при специальной параметризации скалярные произведения представляют собой производящие функции плоских разбиений, заключенных в ящике конечного размера. Рассмотрена двумерная вершинная модель, связанная с фазовой моделью. Статистическая сумма вершинной модели при специальных граничных условиях выражена через скалярное произведение векторов состояния фазовой модели.