Аннотация:
Предложены многоматричные модели, являющиеся производящими функциями для числа разветвленных накрытий комплексной проективной прямой, разветвленной над $n$ фиксированными точками $z_i$, $i=1,\dots,n$, и имеющей фиксированные род, степень и профили ветвлений в двух точках: $z_1$ и $z_n$ (обобщенные “детские рисунки” Гротендика). Вычислена сумма по всем возможным ветвлениям в остальных $n-2$ точках с фиксированной длиной профиля ветвления в точке $z_2$ и фиксированной полной длиной профилей в других $n-3$ точках. Все эти модели лежат в классе гипергеометрических моделей Гурвица и являются тем самым тау-функциями иерархии Кадомцева–Петвиашвили. В описанном случае получаемую модель удается представить в виде цепочки матриц с (нестандартным) взаимодействием между ближайшими соседями вида $\operatorname{tr}M_iM_{i+1}^{-1}$. Описывается техника вычисления спектральных кривых в таких моделях, что открывает возможность построения $1/N^2$-разложений в них с помощью метода топологической рекурсии. Получаемые при этом спектральные кривые оказываются кривыми алгебраического типа.