RUS  ENG
Полная версия
ЖУРНАЛЫ // Теоретическая и математическая физика // Архив

ТМФ, 2016, том 186, номер 2, страницы 230–242 (Mi tmf8966)

Эта публикация цитируется в 8 статьях

Критические индексы и псевдо-$\epsilon$-разложение

М. А. Никитинаab, А. И. Соколовa

a Санкт-Петербургский государственный университет, Научно-исследовательский институт физики им. В. А. Фока, Санкт-Петербург, Россия
b Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, Санкт-Петербург, Россия

Аннотация: Представлены псевдо-$\epsilon$-разложения ($\tau$-ряды) для критических индексов трехмерной $O(n)$-симметричной модели типа $\lambda\phi^4$, найденные на основе шестипетлевых ренормгрупповых разложений. Численные результаты приведены для физически интересных случаев $n = 1$, $n = 2$, $n = 3$ и $n = 0$, а также для $4 \le n \le 32$ с тем, чтобы выявить общие свойства полученных рядов. Псевдо-$\epsilon$-разложения индексов $\gamma$ и $\alpha$ имеют малые и быстро убывающие по модулю коэффициенты, так что вполне приемлемые численные оценки дает прямое суммирование $\tau$-рядов, а обращение к аппроксимантам Паде позволяет получить высокоточные результаты. Напротив, коэффициенты псевдо-$\epsilon$-разложения индекса поправки к скейлингу $\omega$ не имеют выраженной тенденции к убыванию при физических значениях $n$. Однако соответствующие ряды знакопеременны, и для получения надежных численных оценок здесь также оказывается достаточным использование простых аппроксимант Паде. Таким образом, технику псевдо-$\epsilon$-разложения можно рассматривать как своеобразный метод пересуммирования, превращающий расходящиеся ренормгрупповые ряды в разложения, удобные c вычислительной точки зрения.

Ключевые слова: трехмерная $O(n)$-симметричная модель, критические индексы, псевдо-$\epsilon$-разложение, аппроксиманты Паде, численные результаты.

PACS: 05.10.Cc, 05.70.Jk, 64.60.ae, 64.60.Fr

Поступило в редакцию: 14.05.2015

DOI: 10.4213/tmf8966


 Англоязычная версия: Theoretical and Mathematical Physics, 2016, 186:2, 192–204

Реферативные базы данных:
ArXiv: 1602.08681


© МИАН, 2024